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Event Detection

e Definition: Event detection (ED) is a crucial task in
information extraction, which aims to identify event triggers
(words or phrases that indicate events) and classify triggers
into predefined event types !.

® Example:

A cameraman M when an American tank on the Palestine Hotel.

Event: Die Event: Attack

Figure 1: A classic example of event detection.

! According to the definition of events in the annotation guideline designed
for the ACE2005 dataset

Yinyi Wei and Shuaipeng Liu et al. ing University and Meituan Group

DESED: Dialogue-based Explanation for Sentence-level Event Detection



Introduction
[e]e] e}

Motivation

® Sentence semantics enhancement.
® Multi-task Learning: Leveraging annotations from other
information extraction tasks.
® Prompt-based Learning: Exploiting PLMs by retrieving similar
instances or adding manual definitions of labels, or by
converting information extraction tasks into slot-filling tasks.

® MRC-based methods for event detection.
Trigger_1, Trigger_2, ..., Trigger_nt

MODEL (Trigger span prediction
or sequence labelling)

t
[CLS] Question (e.g., what is the trigger?) [SEP] Sente!nce [SEP]

Figure 2: MRC-based methods for event detection.
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Our Solution

® We propose to use generative models to generate contextual
information for a sentence.

® |n order to obtain consistent information with the original
sentence, the contexts are generated in the form of a dialogue.
We refer the generated dialogue for an event description to
dialogue-based explanation.

® \We propose three conceptually simple methods to generate
dialogue-based explanation and design hybrid attention
mechanisms to exploit dialogue information.
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Dialogue Generation

Three methods to generate dialogues.
¢ Direct generation (for casual dialogues).
® Generation with a prompt (for focused dialogues).
® Further training and generation (for domain-specific

dialogues).
(a) s = original sentence
— (b) s = original sentence + prompt
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Figure 3: Illustration of dialogue generation methods and an example of
dialogue generation with further training on two roles.
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Dialogue Generation

(a) Original Sentence: Giuliani regularly officiated at weddings while in office.
Trigger: weddings  Event: Marry

[ ]
@ [ Giuliani regularly officiated at weddings while in office,

User
He was a wedding planner.

He's a wedding architect.

@ | Giuliani regularly officiated at weddings while in office.
What event does the previous sentence describe ?

User

(13

T think he means the wedding where he was the one ti
who officiated. -

A, that makes sense. [ was thinking more of |t
the fact that he was a pricst and not a priest. | fm

T was thinking the same thing. I think he was just i
a priest, but he was also a priest at the wedding. |

ot

e

I think he's a funeral architect. He's a very good
architect. I'm not sure if he's an architect or a
funeral planner. I think he was a funeral designer.

(13

(b) Original Sentence: 73] — /217 iM% @  ( Find a metal barbed wire halfway through the meal)
Trigger: £k% (metal barbed wire) ~ Event: 5#4% (Impurities )

- (e 3 (i v

User User

R EA T (42

‘What event does the previous sentence describe ?

BEATHR? KA
> Therearebones n e el Bt wie?So poweril g

(e woEaT )

> Hahahahaba Tomd 00! ot

= ry bring
my swecite and why do you want

[ QEIN S
-

User > There are nails inthe dish

ok, R ®
-

=>Donltever do tatagain Bot > My sweetc honey, is it a metal barbed wire ball? Agent

Figure 4. Examples of dialogue generation for a specific sentence with
three methods: (1) Direct generation; (2) Generation with a prompt; (3)
Further training and generation. Figure (a) shows the dialogue
generation using method (1)(2) on ACEO05-E+. Figure (b) shows the
dialogue generation using method (1)(2)(3) on FOSAED-R
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Exploitation of Dialogue Information

Event detection in this work is based on sequence labelling using

BIO tagging format.
® Token-level attention.
® Utterance-level attention.
® Hybrid attention.

(a) Token-level Attention
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(b) Utterance-level Attention
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Figure 5: Different attention mechanisms of exploiting dialogue
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Exploitation of Dialogue Information

® Some notations: The original sentence: s. Generated
utterances u!, ... uNv. Representation of s: hC.
Representations of utterances: h',..., h"V.

® Token-level attention: Taking advantage of the self-attention
mechanism in models like BERT. Concatenating the original
sentence and generated utterances to form a combined input,
¢ = s [SEP] u! [SEP] ... [SEP] uNv. After obtaining
contextual representations of ¢, the token representations
corresponding to s are classified into specific tags by a
classifier.
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Exploitation of Dialogue Information

e Utterance-level attention:
® QObtaining a dialogue state d:

Ny
d=> ahjcg, d €RP (1)
i=0
exp(s;)
—...C) (2)
i—o &xP(s))
si = tanh (hicrs) - (Wa - (hiers) " + ba)) (3)
® Fusing d into token representations of s:
pi=h0| F; )
f;:9i0h9+(1—0i)0d (5)
0; = sigmoid((h? || d) - W, + by) (6)

® Hybrid attention: Cover both the token-level attention and
the utterance-level attention.
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Datasets and Evaluation Metrics

e ACE2005: A collection of documents from a diversity of
domains, the most widely used dataset for event extraction.
For data split and preprocessing, we follow ONEIE (2020),
which adds back pronouns and multi-token triggers. The
version is denoted as ACEQ5-E™.

e FOSAED: FOSAED (Food Safety on User Reviews for Event
Detection) is a real-world Chinese event detection dataset,
consisting of sentence-level user reviews in the domain of food
safety based on a leading e-commerce platform for food
service. To support further training, a number of unlabelled
user-agent conversations are collected, which are also in the
domain of food safety.
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Datasets and Evaluation Metrics

e Statistics of datasets:

Dataset Split ~ #Sents  #Events
Form #Docs  #Sents
Labellod Train 19,216 4,419
clle ACE0S-E* Dev 901 468
User Reviews 4226 4226 Test 676 424
Unlabelled Train 3,380 3,893
Conversations 135 309:295 FOSAED-R Dev 423 494
Test 423 512

Table 1: Statistics of FOSAED. We show the number of
documents and sentences for different forms of data.

Table 2: Dataset statistics. We show the number of
sentences and events for different splits.

® Evaluation metrics: Fl-scores of Trig-1 and Trig-C.
® Trig-l: A trigger is correctly identified if its offset match any of

the gold triggers.

® Trig-C: The span of the trigger is correctly identified and its

event type is also correctly classified.
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Experimental Results
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Results

Main Results:

‘ | ACEsEr | FOSABDR Attention Mechanisms:
Category Methods
| | TrigI Trig-C | Trigl Trig-C
BiLSTM+CRF 729 693 | 715 708 Generation | Aq | ACEOS-E* | FOSAED-R
Basic DMBERT 735 695 | 728 714 | | Trigl TrigC | Trigd Trig-C
BERT 734 705 | 736 715 T e 716 | 758 743
MRC-based | BERT_QA_TRIGGER | 746 715 | 729 718 Direct | U | 749 718 | 750 734
P 56 728 H| 762 723 | 757 738
. ne 7 X B R
Multi-task | g e ‘ 767 133 | . R T | 752 723 | 751 737
Pompt | U | 762 735 | 758 743
Text2Event* ‘ B 718 l : - H| 769 733 | 743 729
Prompt-based | DEGREE* 767 727 - -
T 743 729
PILED* - 734 - - Further ‘ U ‘ ‘ 749 735
Multi-task and | TANL* 715 684 - - H 756 744
Prompt-based UIE* - 734 - -
Direct G ” 762 723 758 743 Table 4: Different attention mechanisms of DESED on
. ] irect Generation X ¥ I vy R (Fl. ;
Dialogue-based | ppgpD | Generation with a Prompt | 769 735 | 758 743 ACEISE' and FOSAED R (Fl-score, o). T U and H
p Further Training . i 756 744 note token-level, utterance-level and hybrid attention
mechanism respectively.

Table 3: Experimental results of sentence-level event detection on ACEOS-E+ and FOSAED-R (F1-score, %). The
best results are in boldface. * indicates results cited from the original paper.
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Exploration of Generated Dialogues

Three features to quantify the consistency of generated dialogues:

® Definition of a consistent dialogue: if a sentence contains
events, the generated dialogue should contain all events in
this sentence; if a sentence has no events, the generated
dialogue would also has no events.

° . _ number of consistent dialogues
p(consmtent) number of original sentences
° _ number of consistent dialogues having all events
P (event) number of original sentences with events
° _ __ number of consistent dialogues having no events
P (no event) number of original sentences without events
o A BERT model is employed to detect events in the generated

dialogues.
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Exploration of Generated Dialogues

® Exploration of different dialogue generation methods:
Generation Indicator ACE05-E*  FOSAED-R

Length 54.6 62.1

. p(event) 11.9 19.5
Direct p(no-event) 93.2 722
p(consistent) 58.0 30.7

Length 60.9 79.2

p(event) 21.2 24.0

Prompt 3 iro-event) 80.4 711
p(consistent) 54.7 34.0

Length - 134.6

p(event) - 41.1

Further p(no-event) - 26.7
p(consistent) - 38.1

Table 6: Heuristic exploration of different dialogue gen-
eration methods based on BERT and four indicators.
The number of generated utterances is set to five.
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Comparison Between Dialogues and Narrative Contexts

® Narrative Contexts vs Dialogues

Generation Indicator Context Dialogue
Trig-C 70.6 70.9
: p(event) 22.5 11.9
Direct p(no-event) 50.4 93.2
p(consistent) 38.3 58.0
Trig-C 70.6 71.1
p(event) 23.5 21.2
Prompt 3 no-event)  49.1 80.4
p(consistent) 38.0 54.7

Table 7: Experiments of using plain narrative contexts
or dialogues as additional information on ACE05-Et.
Five generated utterances are used for dialogue, and the
number of generated tokens is set to the average token
length of the five utterances for narrative contexts.
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Conclusion and Future Work

® We propose dialogue-based explanation to enhance sentence
semantics for sentence-level event detection.

® We propose three conceptually simple methods to generate
dialogues for given original sentences, which concentrate on
casual dialogues, focused dialogues and domain-specific
dialogues respectively. To make effective use of generated
dialogues, we design hybrid attention mechanisms at different
levels of granularity.

® |n the future, we are interested in generating dialogue-based
explanation in a more controllable way and extending
dialogue-based explanation to other tasks.
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